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Abstract. We study the lasing action due to nonlinear interactions of photons with boson
elementary excitation, such as phonons and excitons, and point out the distinct features from
the conventional laser model described by the two-level model. External feedback by means
of cavity mirrors is unnecessary for the lasing action as well as for the increasing absorption
optical bistability. It is shown that the Landau theory of the second-order phase transition is
applicable to the threshold behaviour of the present mirrorless laser model.

1. Introduction

The two-level model plays an important role in the research of the interaction of radiation
with condensed matter [1–6]. The conventional laser theory (Sargentet al [1], Haken [2]
and Louisell [5]) and the theory of optical bistability (Gibbs [4], Bonifacio and Lugiato [6])
are based on the two-level model. However, the optical nonlinearity due to the coupling
between photon and two-level model possesses the character of saturated absorption (SA),
so this model cannot describe the mechanism for increasing absorption optical bisability
(IAOB). Planck, in his explanation of thermal radiation, proposed a particle model for
electromagnetic waves which was the beginning of quantum theory. As ideal black-body
radiation is independent of the radiated object and dependent only on its temperature, Planck
treated the black-body as a system consisting of ‘a large number of similar simple periodic
oscillators isolated from one another’ [7], the dynamics was simplified: the oscillators emit
and absorb photons; the excited states of the oscillators can be described by boson quasi-
particle excitation in condensed media (e.g. phonons or excitons). In the light of Planck’s
model, one of the present authors has dealt with IAOB [8]. It has been demonstrated that the
nonlinear interaction of photons with the boson elementary excitation can provide a novel
IAOB mechanism. This paper will further study the lasing action due to this coupling.

The paper is organized as follows. We shall develop the Hamiltonian of photon–boson
coupling in section 2. Coherent injection and incoherent injection will be discussed in
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section 3. In sections 4, 5 and 6 we shall solve the laser equations and discuss the
stability, threshold behaviour of the laser and parameters of coupling; we shall give a
concise conclusion in section 7.

2. The Hamiltonian of the coupling between photons and material bosons

The Hamiltonian of the system of photons and bosons in a single mode form is

H = h̄ωεa
+a + h̄ωeb

+b + ih̄gb+(1 + λb+b)a + HC λ = gNL/g (1)

where (a+, a) represent operators of the photon mode with frequencyωε , (b+, b) stand for
the operators of boson mode with frequencyωe, which obey the boson commutation relation
as photon operators,

[b, b+] = 1 (2)

whereg is a linear coupling constant between photons and bosons. The nonlinear coupling
constantgNL(= λg), generally speaking, may be positive or negative, which depends on
working materials, but the positive one is required for laser action, which will be shown
later. By considering the polarization of electromagnetic interaction in the rotating wave
approximation (RWA), it has been demonstrated that the boson mode in the Hamiltonian
expressed by equation (1) may be either the optical phonons in ionic crystals [9] or the
Wannier excitons in low-density case in semiconductors [10]. We shall present our results
in parallel with the case of the two-level model, so we rewrite equation (1) as

H = h̄ωεa
+a + h̄ωeb

+b + ih̄g(π+a − πa+)

π+ = b+(1 + λb+b) π = (1 + λb+b)b (3)

and (π+, π ) should be interpreted as the operators of matter polarization, as shown in
[9]. When the operators (b+b, π+, π ) in equation (3) are replaced by the Pauli operators
(σ3, σ+, σ−), equation (3) becomes the well known Hamiltonian of photons interacting with
a two-level system [1, 2, 5]

H = h̄ωεa
+a + h̄ωeσ3 + ih̄g(σ+a − σ−a+) (4)

where

[σ+, σ−] = σ3 [σ±, σ3] = ∓2σ3 (5)

and (σ+, σ−) represent the polarization. The major difference between the expressions of
Hamiltonians (3) and (4) is that the two-level model has three independent variables (q-
number) governed by the angular momentum commutation relations given by equations (5),
which determine the nonlinearity of the corresponding dynamic equation [2]. However,
the boson model has only two variables obeying the boson commutation relation, and the
nonlinear termλb+b is responsible for the nonlinearity in the coupled photon–boson equation
of motion. These lead to a difference between the two-level model and boson model, as
far as dynamical behaviours of optical bistability and lasing action are concerned. The aim
of this paper is to illustrate the lasing action arising from the nonlinear coupling between
photons and bosons in contrast with the two-level model.

3. Coherent and incoherent injections

The system of photons and bosons mentioned above forms the central part of the laser
(or bistable) operating device and hence cannot be isolated from its surroundings. First
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of all, the device should be able to supply coherent light power as an output, which is
a kind of dissipation of the photon mode. In addition to this, there exists other photon
mode dissipation (e.g. scattering, diffraction, non-intrinsic absorption etc). Moreover, other
different dissipation mechanisms in the boson mode also exist. Obviously, in order to
sustain the operation of the device some energy must be injected. There are two kinds of
energy injection: coherent and incoherent. Coherent injection refers to the incident light,
which is indispensable for passive bistable devices, whereas incoherent injection or the pump
forms an essential part of the laser. Within the semiclassical approximation, after adding
the phenomenological terms of dissipation, coherent injections, and incoherent injections
mentioned above, the photon–boson coupling equations are derived from the Hamiltonian
(equation (1)) as follows [8]:

ε̇ = −(γε + i(ωε − ω))ε − g(1 + λ|e|2)e + γεεi (6)

ė = (0 − γe − i(ωe − ω))e + g((1 + 2λ|e|2)ε − λe2ε∗) (7)

whereε ande ( and their complex conjugateε∗ ande∗) stand for the complex amplitudes
of expected values of the photon operatora and the boson operatorb (with their hermitian
conjugatea+ andb+), respectively. That is

〈a〉 = ε(t) exp(−iωt) 〈a+〉 = 〈a〉∗ (8)

〈b〉 = e(t) exp(−iωt) 〈b+〉 = 〈b〉∗ (9)

whereω represents the frequency of incident fieldεi . In the semiclassical approximation in
which the correlation between various operators is neglected, the mean values of product
can be factorized, for example,

nε = 〈a+a〉 = 〈a+〉〈a〉 = ε∗ε (10)

ne = 〈b+b〉 = 〈b+〉〈b〉 = e∗e (11)

wherenε represents the quantum number of photon mode (the photon number in cavity),
while ne is the quantum number of the excited state of boson mode (the number of material
bosons which indicates excitation energy level of the matter). On the other hand, the
expected values of polarization operators (π, π+) are

〈π〉 = 〈(1 + λb+b)b〉 = (1 + λ〈b+〉〈b〉)〈b〉
= (1 + λ|e|2)e exp(−iωt) 〈π+〉 = 〈π∗〉. (12)

The factor(1 + λ|e|2)e and its complex conjugate are the amplitude of the polarization
(P, P ∗):

P = (1 + λ|e|2)e P ∗ = (1 + λ|e|2)e∗. (13)

In equation (6),γεεi is the coherent driving term of the incident fieldεi , andγε is the decay
(dissipation) rate of photon mode. Moreover, when the term(1+ λ|e|2)e is interpreted as a
matter polarization, equation (6) shows the typical form of Maxwell equation with slowly
varying envelope and space average (mean field) approximation. In other words, it is exactly
the same as the field equation coupled with the two-level atom matter equation (Maxwell–
Bloch equation). Equation (7) and its complex conjugation as matter (boson) equations
correspond to (but are of a different form from) Bloch equations of the two-level model.
γe in equation (7) is the decay rate of the boson mode, whereas0 represents the pumping
rate corresponding to the incoherent energy injection to the material boson mode. In order
to illustrate the dissipation and injection of energy in detail, we transform equations (6) and
(7) into rate equations of the real amplitude and phase. Lettingφε(φe) be the phase of the
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photon (boson) mode relative to the incident light phase, which may be read as zero, we
have

ε = |ε| exp(iφε) = √
nε exp(iφε) e = |e| exp(iφe) = √

ne exp(iφe). (14)

Assuming the injected fieldεi is real, equations (6) and (7) become

dnε/dt = −2γεnε − 2g(1 + λne)
√

nenε cos(φe − φε) + 2γεεi

√
nε cosφε (15)

dne/dt = −2γene + 2g(1 + λne)
√

nenε cos(φe − φε) + 20ne (16)

dφε/dt = −(ωε − ω) + g(1 + λne)
√

ne/nε sin(φε − φe) + γεεi/
√

nε sinφε (17)

dφe/dt = −(ωe − ω) + g(1 + 3λne)
√

nε/ne sin(φε − φe). (18)

The rate equations (15) and (16) of quantum numbersnε and ne, respectively, as real
amplitude equations demonstrate the energy exchanges. The middle term on the right-hand
side of equation (15) and that of equation (16) are equal in absolute value, but their signs
are opposite. This term obviously represents the energy interchange between bosons and
photons which arises from the bosons absorbing or emitting photons, which is the energy
exchange inside the intrinsic system. The term 2γεnε (2γene) with negative sign stands for
the rate of dissipative energy of photons (bosons) to its reservoir. The last term (symbolized
simply by Pcoh) on the right-hand side of equation (15),

Pcoh = 2γεεi |ε| cosφε

(|ε| = √
nε

)
(19)

is the work (per unit time) done by the incident lightεi on the intrinsic system. The
Pcoh, depending on a definite phaseφε , i.e. the phase of photon mode relative to incident
light, obviously stands for a coherent injection of energy. However, the counterpart in
equation (16),

Pincoh = 20ne = 20ee∗ (20)

is the power transferred directly to bosons, which is independent of the boson mode phase.
The term 20ne, just like the term 2γene, is the incoherent energy exchange. The 20ne is
an ‘input’, while −2γene is an ‘output’. The term 2γene includes the spontaneous emission
and the radiationless transition to a lower level of the boson mode, while 20ne is produced
by the pump system exciting the bosons to higher energy level. All of these are illustrated
in figure 1. The quantity0 as a pumping rate plays an important role of control parameter,
which will be shown later.

4. Stationary solution of laser equation and linear stability analysis

It is easy to show that when0 > γe, the incidentεi will be amplified by the stimulated
emission of radiation of the boson mode. However, we are particularly interested in the
lasing action without injected signal (i.e. the laser operation as a self-sustained oscillator)
and its threshold behaviour; therefore, we omit the coherent driving term in equations (15)
and (17), i.e. assumeεi = 0. Then, the reference frequencyω in equations (17) and (18)
should be replaced byωε or ωe, respectively. Furthermore, our attention is focused on the
case of pure resonance, i.e.ω = ωε = ωe.

Without loss of generality, the phase of steady state (ṅε = ṅe = φ̇ε = φ̇e = 0) of
equations (15)–(18) on conditionεi = 0, ω = ωε = ωe, andg > 0 becomes,

sin(φε − φe) = 0 and sin(φε) = 0. (21)
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Figure 1. Illustration of the incoherent oscillator
transition: pumping (transition to the higher level) and
damping (transition to the lower level).

Figure 2. Light output (as a function of the matter
excitation) ε2(e2) against pumping rate0 curve: the
full curve stands for the stable branch and the broken
curve stands for the unstable branch.

The phase differenceφε −φe may be locked in this stationary value, so thatε ande become
real numbers, i.e.ε = −|ε| = −√

nε , but e = |e| = √
ne, and then equations (6) and (7)

reduces to the real equations

ε̇ = −γεε − g(1 + λe2)e = Iε(ε, e) (22)

ė = (0 − γe)e + g(1 + λe2)ε = Ie(ε, e) (23)

which is a set laser equations for photon–boson coupling in the case of a single mode and
for pure resonance. The steady-state equation may be expressed as

εst = −g(1 + λe2
st )est /γε = −(0 − γe)est /(g(1 + λe2

st )). (24)

Obviously, there two different solutions of the steady states:

(i)

est = 0 thereforeεst = 0 (25)

(ii)

e2
st = 1

λ

(√
(0 − γe)γε

g
− 1

)
ε2
st = 0 − γe

γελ

(√
(0 − γe)γε

g
− 1

)
. (26)

Becausee2 (= ne) andε2 (= nε) must be taken as positive values, we have√
(0 − γe)γε/g > 1 or 0 > g2/γε + γe = 0th. (27)

In other words, only when the pumping rate0 is above a certain value0th, laser action can
occur. This is typical threshold behaviour of the laser.

However, we do not know whether the solutionεst = 0 (est = 0) exists when0 > 0th.
Therefore, in order to confirm the threshold behaviour mentioned above, we must proceed
with a stability analysis of equations (22) and (23). Furthermore, through linear stability
analysis the specific features of the boson model laser can be obtained. The results are
summarized as follows
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(i) The necessary stability conditions of the steady stateε = 0 (e = 0) read

(a) 0 < γε + γe (28)

(b) 0 < g2/γε + γe = 0th. (29)

(ii) The steady statesε2 6= 0 (e2 6= 0) read

(a) γε + G − 2Gth

√
G/Gth > 0 (G = 0 − γe) (30)

(b) 0 > g2/γε + γe = 0th. (31)

In equation (30)G is defined as a net gain. First of all, we would like to clarify the
implication of condition (30). Assuming that0 exceeds slightly the threshold, i.e.

0 = 0th + 1 or G(= 0th + γe + 1) = Gth + 1 but 1 � Gth (1 > 0). (32)

We expand the square-root term of expression (30) as a series,√
G/Gth =

√
1 + 1/Gth = 1 + 1

2
(1/Gth) − 1

2 × 4
(1/Gth)

2 + · · · (33)

so that equation (30) becomes

γε − Gth + 1

4
12/Gth − · · · > 0. (34)

As 1 may be infinitesimal, this condition is equivalent to

γε > Gth = 0th − γe = g2/γε i.e. γε > g (35)

which shows that condition (28) is indeed superfluous.
The results of the steady-state solutions and the linear stability analysis are illustrated

in figure 2. Theε2(e2) (laser light output) against0 (pumping rate) curve is bifurcated at
the threshold0 = 0th: the full curve represents a stable branch, whereas the broken curve
represents an unstable branch. Note that the threshold0 = 0th as a critical point loses
the linear stability, since it cannot satisfy the linear stability condition (29) or (31) [14].
The present threshold as well as that of the two-level model laser indicates a continuous
second-order phase transition, which is critically stable. This will be shown later.

Next, we discuss the threshold value0th and the stability condition. From equations (27)
and (35) we can see that the stability condition (γε > g) requires one to take a sufficiently
high decay rate of the photon mode. Because (0th − γe) is inversely proportional toγε , the
high decay rate corresponds to the low pumping threshold0th, which makes the laser start
easily. On the other hand, the high photon mode decay rate means low reflectivity (high
transitivity) at the output end of the cavity, so the external feedback by means of cavity
mirrors is unnecessary for the laser and for the IAOB [4, 8] due to photon–boson coupling.
This is an essential character which is different from the laser of the two-level model. The
corresponding pump parameter of the two-level model laser is the unsaturated inversion of
populationD0 and threshold (D0)th, which is expressed as [2]

(D0)th = γεγt/g
′2 (36)

whereg′ is a coupling constant between photons and two-level atoms andγt is a transverse
relaxation rate. Equation (36) shows that(D0)th is directly proportional to the photon mode
decay rate which is just opposite to the case of the boson model. Hence, the two-level
model laser needs ‘good’ quality of cavity, but ‘bad’ quality of cavity is just suitable for
the boson model laser.
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5. Second-order phase transition

The system that is far from equilibrium, in which the Fokker–Planck equation satisfies
the principle of detailed balance, possesses a so-called quasi-thermodynamic potential�

involved in the stationary solutionf in the following exponential form [13, 14]:

f ∼ exp(−2�/Q) (37)

where Q is a fluctuation constant. Generally, in the purely absorptive case and after a
suitable adiabatic approximation the detailed balance will be satisfied by the nonlinear
optical dissipative systems. We assume that with the condition of adiabatic approximation
beingγε � γe, which accords with the demands of the low pump threshold and the linear
stability conditionγε > g (cf equation (35)), the photon modeε may be treated as a fast
variable slaved by the boson variablee. This is equivalent to setting (see equations (22)
and (23))

ε̇(t � 1/γε) = −γεε − g(1 + λe2)e = 0 (38)

so ε is eliminated from equation (23) and one obtains

ė = (0 − γe)e − g2(1 + λe2)2e/γε = Ie(ε(e), e) (39)

which is an equation of self-sustained oscillation. Here the factorg2(1 + λe2)2e/γε in the
second term of the right-hand side should be interpreted as a rate of coherent radiation
(stimulated emission) damping (the damping due to spontaneous emission is included in the
decay rateγe). This coherent radiation damping reflects the energy transferring from boson
mode to coherent photon mode. (cf also equations (15) and (16).)

It can be proved that the quasi-thermodynamic potential� involved in equation (37) is
an integration of equation (39) as follows:

� = −
∫

Ie(ε(e), e) de = −
∫

((0 − γe)e − g2(1 + λe2)2e/γε) de. (40)

Neglecting the terms of more than sixth power ine, we can obtain the potential� near the
threshold:

� = 1

2
(Gth − G)e2 + b

4
e4 (41)

where

Gth = g2/γε b = 2λg2/γε = 2gNLg/γε. (42)

The potential� gives a kind of stability criteria. If the steady state (eithere = 0 or e2 6= 0)
is stable, there must be

∂2�/∂e2 = Gth − G + 3be2 > 0 (b = 2gNLg/γε > 0) (43)

which is consistent with the results (29) and (31) of the linear stability analysis of
equations (22) and (23) before adiabatic approximation. (However, after adiabatic
approximation,γε > g, one of the linear stability conditions, is absent.) With the help
of potential� we can also examine the stability of the critical point which loses the linear
stability, i.e. at which

∂2�/∂e2 = 0. (44)

The stability of the critical point is determined by the third and fourth derivatives of� as
follows [13]:

∂3�/∂e3 = 0 and ∂4�/∂e4(= 3!b) > 0. (45)
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Obviously, the point of the threshold (G = Gth, est = 0) is a stable critical point. The
expression (40) shows the typical formulation of Landau mean field theory of second-order
phase transition. Previously, on the basis of the two-level model Graham and Haken [11],
Degiorgio and Scully [12] obtained separately the results similar to the formulation (41). To
eliminate adiabatically the atom (matter) variables (polarization and population inversion) in
the case of the two-level laser model, the matter (oscillator) variablee as an order parameter
in the� formulation (41) should be replaced by the photon variableε, so� is transformed
as [1, 2]

� = 1

2
(Gth − G)ε2 + b

4
ε4 (46)

where

Gth = g2(D0)th/γt (G = g2D0/γt ) b = 4g2Gth/γtγl. (47)

In spite of the great difference between two kinds of laser model in respect of the dynamics
reflected by each Hamiltonian of the intrinsic system (cf equations (1) and (4)), the threshold
behaviour of both lasers, shown separately in expressions (41) and (46), is basically the same.
It demonstrates further that the critical phenomena and the corresponding phase transitions
arising from different interactions have their significant generality. As a rule there is also
no exception for the lasers in the systems that are far from equilibrium.

6. Discussion on nonlinear coupling

Nonlinear coupling has a significant effect on the lasing action due to the intrinsic interaction
of light with material bosons as well as on IAOB. The intensity of this coupling is embodied
in the parametergNL(= λg). Let equation (39) be rewritten as a rate equation of excitation
energy levele2 of matter (cf also (30) and (31)),

de2

dt
= 2(G − Gth)e

2 − 2gNLe4(2g + gNLe2)/γε (48)

which is still the equation of self-sustained oscillation. The nonlinear coupling parameter
as a coefficient of negative feedback, i.e. the term ‘2gNLe4(2g + gNLe2)/γε ’ with negative
sign, ensures the stability of the operation. Certainly, it is easy to show that the variable
of equation (48) can also be expressed in terms of the deviationδ of the e2 from its
stationary valuee2

st (> 0), and the solution ofδ with linear approximation under conditions
(G − Gth) � Gth(G > Gth) and |δ| � e2

st reads as

δ(t) = δ(0) exp(−8t) δ(t) ≡ e2(t) − e2
st (49)

where the decay rate8 of the deviationδ is just the potential stability criterion (43)

8 =
(

∂2�

∂e2

)
e2=e2

st>0

= −(G − Gth) + 6gNLge2
st /γε (50)

and

G − Gth ≈ 2
√

Gth

(√
G −

√
Gth

)
. (51)

Taking the solution ofe2
st > 0 (i.e. equation (26) where0 − γe = G, g2/γε = Gth and

λ = gNL/g) into account, one obtains

8 = 4gNL(ge2
st /γε). (52)

Obviously, the necessary stability condition of the steadye2
st > 0 is 8 > 0 which means

gNL > 0, because we always havege2
st /γε > 0 in equation (52). Therefore, for the laser
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action of our model, the nonlinear coupling parametergNL should be positive. Furthermore,
becauseγε > g or g/γε < 1 (which is the stability condition (35)), the stability is ensured
mainly by the parametergNL. Then the sufficiently largegNL is also required in order
to have corresponding ability against different kinds of fluctuation of the system. (The
quantitative numbers of thegNL would be decided by exact systems.) In fact, the condition
gNL > 0 is not only the stability condition ofe2

st > 0 andε2
st > 0, but also the precondition

of existinge2
st > 0(ε2

st > 0), since both can be concluded as one condition:

G − Gth = 2gNL(ge2
st /γε) > 0. (53)

The criteria (45), in which 3!b > 0 meansgNL > 0, demonstrates that the nonlinear
coupling constantgNL is also related to the stability of the threshold (critical pointG = Gth,
εst (est = 0) = 0).

7. Conclusion

(i) The nonlinear interaction of photons with the boson elementary excitation in the medium
cannot only describe the mechanism for IAOB [8], but also provide an interesting laser
model.
(ii) According to the demands of linear stability and the low threshold of pumping, the bosom
model laser should have a considerable high decay rate of the photon mode. Therefore,
external feedback by means of cavity mirrors is unnecessary for this laser model as well as
for the IAOB which may be called boson model optical bistability [8, 9].
(iii) Though the dynamics of the boson model laser is different from the two-level model
laser, in the vicinity of the critical point their generality becomes significant, since the
threshold behaviour of the present laser model can also be cast into the framework of the
Landau theory of second-order phase transition.
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